
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

R-Eval: A Unified Toolkit for Evaluating Domain Knowledge of
Retrieval Augmented Large Language Models

Shangqing Tu∗
DCST, Tsinghua Univerisity

Beijing 100084, China
tsq22@mails.tsinghua.edu.cn

Yuanchun Wang∗
SoI, Renmin University of China

Beijing 100084, China
wangyuanchun@ruc.edu.cn

Jifan Yu
DCST, Tsinghua Univerisity

Beijing 100084, China
yujf21@mails.tsinghua.edu.cn

Yuyang Xie
DCST, Tsinghua Univerisity

Beijing 100084, China
xieyy21@mails.tsinghua.edu.cn

Yaran Shi
SIOE, Beihang Univerisity

Beijing 100084, China
syr2021@buaa.edu.cn

Xiaozhi Wang
DCST, Tsinghua Univerisity

Beijing 100084, China
wangxz20@mails.tsinghua.edu.cn

Jing Zhang
SoI, Renmin University of China

Beijing 100084, China
zhang-jing@ruc.edu.cn

Lei Hou
BNRist, DCST, Tsinghua Univerisity

Beijing 100084, China
houlei@tsinghua.edu.cn

Juanzi Li
BNRist, DCST, Tsinghua Univerisity

Beijing 100084, China
lijuanzi@tsinghua.edu.cn

ABSTRACT
Large language models have achieved remarkable success on gen-
eral NLP tasks, but they may fall short for domain-specific problems.
Recently, various Retrieval-Augmented Large Language Models
(RALLMs) are proposed to address this shortcoming. However, exist-
ing evaluation tools only provide a few baselines and evaluate them
on various domains without mining the depth of domain knowledge.
In this paper, we address the challenges of evaluating RALLMs by
introducing the R-Eval toolkit, a Python toolkit designed to stream-
line the evaluation of different RAG workflows in conjunction with
LLMs. Our toolkit, which supports popular built-in RAG workflows
and allows for the incorporation of customized testing data on
the specific domain, is designed to be user-friendly, modular, and
extensible. We conduct an evaluation of 21 RALLMs across three
task levels and two representative domains, revealing significant
variations in the effectiveness of RALLMs across different tasks
and domains. Our analysis emphasizes the importance of consid-
ering both task and domain requirements when choosing a RAG
workflow and LLM combination. We are committed to continuously
maintaining our platform at https://github.com/THU-KEG/R-Eval
to facilitate both the industry and the researchers.

CCS CONCEPTS
• Computing methodologies→ Discourse, dialogue and prag-
matics; Natural language generation.
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1 INTRODUCTION
The burgeoning advancements in large language models (LLMs),
such as GPT-4 [29] and Llama [40], have sparked widespread inter-
est across industry, academia, and the public sphere [2]. However,
while LLMs excel in general tasks [5, 9], their performance can
falter when confronted with domain-specific tasks [15, 50]. This
shortfall is primarily due to the potential absence of domain knowl-
edge [1], defined as pre-existing information and expertise within
a specific field. Consequently, the technique of retrieval augmented
generation (RAG) [18] has gained traction, particularly in adapting
LLMs for domain-specific applications such as AI healthcare assis-
tants, as it offers a solution to mitigate the propensity of LLMs to
generate hallucinated responses [19, 39, 48].

As LLMs continue to evolve [55], becoming more powerful
and resource-intensive than small pre-trained language models,
a plethora of new RAG workflows have been introduced specifi-
cally for these models. As depicted in Figure 1, these innovative
approaches typically start by retrieving relevant resources based
on user input. Subsequently, they either synthesize outputs from
independently executed tools, as exemplified by program-aided lan-
guage model workflow (PAL) [10] and OpenAI’s Function Calling1
(Figure 1 bottom), or adopt a sequential execution and prompt-based
reasoning process, as demonstrated by DFSDT [31] and ReAct [53]
(Figure 1 top). These advancements in RAG workflows for LLMs
are opening new avenues for exploration and evaluation.

1https://platform.openai.com/docs/guides/function-calling
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Despite the progress in the field, there is still a notable scarcity
of software tools that offer a simple, all-in-one evaluation system
for different retrieval augmented large language models (RALLMs).
However, prior evaluation works lacks consideration of two key fac-
tors: (1) Insufficient exploration of combinations between LLMs
and RAG workflows. Recent RAG evaluation frameworks such
as RAGAS [6] and ARES [35], offer only a limited number of base-
lines and do not fully explore the myriad possible combinations of
RAG workflows and LLMs [27]. (2) Lack comprehensive mining
of the domain knowledge. Furthermore, recent benchmarks like
ToolBench [31] and API-Bank [21] primarily focus on the general
capabilities of RALLMs across various domains, with each domain
typically containing only about 10 test cases on average, result-
ing in a shortage of testing data. A unified toolkit could facilitate
fair comparisons and promote wider adoption of various RALLM
systems for domain-specific applications.

To address this gap, we introduce R-Eval (RALLM Evaluation
Toolkit), a Python toolkit designed to streamline the evaluation of
different RAG workflows in conjunction with LLMs. Our toolkit
offers users the flexibility to explore four popular built-in RAG
workflows: ReAct [53], PAL [10], DFSDT [31], and function calling1.
In addition, it provides the capability to incorporate customized
testing data in specific domains through template-based question
generation. An included analysis module can automatically perform
performance, error, and deployment analyses. Distinct from other
LLM evaluation toolkits, R-Eval is one of the first to prioritize
the evaluation of domain knowledge in RALLMs. It is designed
to be user-friendly, modular, and extensible, offering a robust and
comprehensive evaluation framework for the community.

Based on the R-Eval toolkit, we conduct an evaluation of 21
RALLMs for three task levels on two representative domains: Wiki-
pedia [51] and Aminer [38], leading to some interesting findings:

We discover that the effectiveness of RALLMs can vary signifi-
cantly across different tasks and domains. In particular, the combi-
nation of the ReAct workflow with the GPT-4-1106 model exhibits
exceptional performance across all tasks and domains, making it
a robust choice for a variety of applications. However, the opti-
mal RAG workflow and LLM combination may vary depending on
the specific task or domain. For instance, other combinations such
as PAL with GPT-4-1106 or ReAct with Llama2-7B-chat [40] also
demonstrate strong performance in certain areas. Our Matching
Analysis further reveals that while GPT-4-1106 is the best matching
LLM for the ReAct workflow across all tasks and domains, other
workflows like PAL may yield comparable results with different
LLMs, such as GPT-3.5-turbo-1106.

In our Error Analysis, we find that the PAL workflow produces
the highest proportion of tool-using errors, indicating that it often
fails to successfully retrieve domain knowledge, which could ex-
plain why GPT-4 performs poorly with PAL. On the other hand,
workflows like ReAct, DFSDT, and FC generate fewer tool-using
errors, resulting in more successful knowledge retrieval and bet-
ter overall performance. In terms of practical deployment, we find
that GPT models, which are called through APIs, “outperform”
open-source LLMs in terms of both efficiency and effectiveness.
Among the open-source LLMs, Tulu-7B [46] strikes a good balance
between efficiency and effectiveness, showcasing its potential for
practical applications. Our findings underscore the importance of

How many times has NYU's Yann LeCun's most cited publication been cited?

Action Input...

Observation...

Action...

Observation...

Thought...

Observation...

Thought: get the num_citation
of each Publication.


Observation: ......

Action Input...

Observation...Action Input...


Observation...
Result: Yann LeCun's
most cited publication

has been
cited 71400 times.

Function: searchPerson
Description: find matched person by  name
Parameters: name
Outputs: [{'person_id', 'person_info'}, {...}]

Function: getPublication
Description: get Publication information by id
Parameters: publication_id
Outputs: {'pub_info', ...}

Function: getPersonPubs
Description: get Publication by person_id
Parameters: person_id
Outputs: {'pub_id':..., 'pub_info':...}

Action...

Observation...

Thought: get the num_citation
of each Publication.


Observation: ......

Action Input...

Observation...

Action Input...

Observation...

Action Input...

Observation... 


Result: Yann LeCun's most
cited publication has been
cited 71400 times.

Action: Exit

[program]:


info = {'name' : 'Yann Lecun', 'organization' : 'NYU'}


...


target_publication_dict = sorted(target_person_pubs,

key=lambda x: x['num_citation'], reverse=True)[0]


...


final_result = target_citation_count


[answer]:


Yann LeCun's most cited publication has been

cited 71400 times.

PAL

DT RA

FC

Figure 1: Responses from 4 RAG workflows, including
DFSDT(DT) [31], ReAct(RA) [53], PAL [10] and GPT Func-
tion Calling (FC) for a domain-specific question.

considering both task and domain requirements when choosing a
RAG workflow and LLM combination. These insights offer valuable
guidance for developers and researchers in the selection of suitable
RALLMs for specific tasks or domains.

Impact and Beneficiaries. We’ve crafted the R-Eval toolkit
for thorough RALLMs evaluations and performance analysis. This
toolkit aids: (1) Researchers in evaluating and contrasting RALLMs
across tasks and domains, thereby guiding future research. (2) In-
dustry Professionals, particularly in AI, by offering a resource for
assessing RALLMs’ real-world applicability, aiding in informed
model selection. (3) Developers, by providing a flexible platform to
test, refine, and deploy their RALLMs, and understand trade-offs
between efficiency and effectiveness.

2 BACKGROUND
Retrieval Augmented LLMs. Since LLMs have successfully im-
proved the performance of various general domain tasks [2, 29],
researchers have been exploring the methods that adapt LLMs to
domain-specific tasks. The most common solution is to build a
retrieval augmented LLM (RALLM) that utilize the domain knowl-
edge via retrieval [24]. Previous retrieval workflows for LLM can be
broadly categorized into two categories: (1) Planned Retrieval: The
retriever plans what knowledge to fetch according to the question
and pass them to LLMs for the answer generation [17, 23, 25, 36].
(2) Interactive Retrieval: As the retriever may occasionally fail to
yield accurate or comprehensive results [44], an interactive retrieval
mechanism that grants LLMs the capability to refine the retrieval
process can effectively tackle these challenges [12, 37, 42, 43, 53].

Domain-specific Evaluation. The powerful generation ability
of large language models (LLMs) has had a profound impact in

2
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Figure 2: The framework of our evaluating and analysing process. We first choose an environment and collect testing data from
both existing benchmarks and template-based QA pairs. Then we select the RAG workflows and LLMs to form a RALLM for
running the evaluation. After that, we perform a comprehensive analysis on results to get insights.

various fields, such as law [8], finance [49], medicine [13, 20] and
education [7, 26].Therefore, many efforts have been devoted to eval-
uating the capabilities of large languagemodels for a certain domain
with various new benchmarks, such as LegalBench [11], CMB [45]
and EcomInstruct [22]. However, previous domain-specific evalu-
ations mainly focus on providing tailored task data, ignoring the
importance of building an interactive environment for RAG set-
tings [18], which are widely adopted in real-world applications.This
limitation inspires our work to build easy-to-adapt environments
and free-to-combine retrieval workflows for RALLM evaluations.

Problem Definition We define the problem as follows: Given
a domain-specific task ) that necessitates specialized knowledge
from a particular field, an environment  for querying domain
knowledge, and a RALLM ' with a workflow to fetch relevant in-
formation based on the input and generate a response via LLM,
our objective is to assess the performance of ' on ) using  . The
main challenge lies in the fact that different combinations of large
language models and retrieval workflows can lead to different re-
sults, and the optimal combination may vary depending on the
specific task or domain. Furthermore, the evaluation should not
only consider the final output but also the process of retrieving
information and generating the response, which involves analyzing
the strengths and weaknesses of different RALLMs.

3 SYSTEM
To investigate how well LLMs can master domain knowledge, we
propose R-Eval, a unified evaluation toolkit that can be adapted to
any specific domain. As shown in Figure 2, R-Eval can generate test
cases, load various RALLMs and analyse their performances.

3.1 Environment Setting
In the context of a Retrieval Augmented Large Language Model
system, the LLM interacts with the domain’s API in a tool-using
manner, retrieving the necessary knowledge to accomplish related
tasks. In order for LLMs to retrieve domain knowledge, we design

an environment with several query APIs for each domain. We be-
gin with two representative domains as use cases: (1) Wikipedia2

is a high-quality knowledge source with over 6.6 million English
articles, which has provided supporting facts for building various
open-domain QA tasks [18]. We use a simple Wikipedia web API
with three types of functions to enable interactive information re-
trieval, including Search, Lookup and Finish, which is the same as
ReAct’s environment [53]. (2) Aminer3 [38] is an academic infor-
mation service system containing over 69 million scholar profiles
and 290 million publications. We define 7 query APIs for data re-
trieving about scholars and publications, including searchPerson,
searchPublication and getCoauthors, etc (More are in Appendix A).

3.2 Task Data Collection
Knowledge, which means information including facts, events, and
skills, has been utilized as an indicator for AI’s intelligence level [28].

Task Category. Considering the cognitive ability modeling for
knowledge [55], we select threewidely accepted processes in Bloom’s
taxonomy [16] for organizing the tasks in R-Eval benchmark:

• Knowledge Seeking (KS) is designed to assess the model’s
capacity to accurately recall established facts from the environment,
as demonstrated by the prior Open-domain QA task [4].

•KnowledgeUnderstanding (KU) aims to evaluate themodel’s
proficiency in comprehending the inherent knowledge embedded in
texts, as manifested by the tasks of information extraction [30, 54].

• Knowledge Application (KA) measures the ability of mod-
els to utilize retrieved knowledge in performing reasoning and
problem-solving tasks, which is assessed through various knowl-
edge reasoning tasks like multi-hop reasoning [3, 41, 52].

Test Datasets. The R-Eval benchmark, as depicted in Table 1,
encompasses 12 tasks designed to assess the three levels of cognitive
ability for 2 domains.These tasks are constructed from both existing
datasets and refreshing template-based question generation.

2https://www.wikipedia.org
3https://www.aminer.cn
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Table 1: The domain specific tasks in R-Eval. Test Set and Pool correspond to the testing instances used in each season and the
overall available instances. Existing tasks means their test sets are taken from the original dataset. Refreshing tasks’ instances
are newly developed by our template-based question generation process.

Domain Level ID Dataset Metrics Context Type Test Set Pool Source

Wiki

KS 1-1 High-Freq. F1 Triple 100 20.6M Refreshing
1-2 Low-Freq. F1 Triple 100 20.6M Refreshing

KU
2-1 COPEN-CSJ F1 Entity, Concept 100 3.9k Existing
2-2 COPEN-CPJ F1 Concept 100 4.7k Existing
2-3 COPEN-CiC F1 Concept 100 2.3k Existing

KA

3-1 HotpotQA F1 Document(s) 100 7.4k Existing
3-2 2WikiMulti. F1 Document(s) 100 12.6k Existing
3-3 MuSiQue F1 Document(s) 100 2.5k Existing
3-4 KQA Pro F1 KG 100 1.2k Refreshing

Aminer
KS 1-3 Soay-Easy F1 Triple 100 12.7k Refreshing
KU 2-4 Profiling F1 Document, Entity 100 1.8k Existing
KA 3-5 Soay-Hard F1 KG 100 12.7k Refreshing

Knowledge Seeking Tasks evaluate the model’s ability to re-
call facts. The tasks on wiki domain are constructed from triplets in
Wikidata5M, transformed into sentences with relation-specific tem-
plates. Two test sets are created, one for high-frequency knowledge
(1-1) and another for low-frequency knowledge (1-2). A knowl-
edge seeking test of aminer domain (1-3) is also included, which
annotates knowledge triplets from the aminer knowledge base.

Knowledge Understanding Tasks assess the model’s under-
standing of various types of knowledge from texts. They include
Concept Probing (2-1/2-2/2-3) from the COPENdataset forWikipedia,
which are conceptual similarity judgment (CSJ), conceptual prop-
erty judgment (CPJ) and conceptualization in contexts (CiC) respec-
tively. A dataset on aminer (2-8) is also included, which evaluates
the ability of extracting structured profiles from plain text.

Knowledge Application Tasks measure the model’s ability
to apply retrieved knowledge in multi-hop reasoning tasks. They
include tasks from the HotpotQA (3-1), 2WikiMultihopQA (3-2),
MuSiQue (3-3), and KQA Pro (3-4) datasets. From 3-1 to 3-4, the
reasoning difficulty on wiki domain knowledge is increasing. An-
other KA test for aminer domain (3-6) is also included, producing
questions based on the domain knowledge.

Template-based Generation. Inspired by previous works [3, 47],
we utilize a template-based generation approach to rapidly con-
struct evaluation sets from a given domain database. More specifi-
cally, we initially compose a series of template questions with place-
holders based on the content we need to evaluate, then fill these
templates with meaningful information by sampling entries from
the domain database. Additionally, the answers to these questions
can be also derived directly from the entity information. Notably,
after manually crafting a few template questions, LLMs can be
employed to quickly complete subsequent template construction.

Taking the domain of academic intelligence as an example, we
could design a template question such as ”What are the research
interests of XXX at X institution?”. From the AMiner database, we

can extract a plethora of scholar entity information like names,
affiliations, interests, and email addresses, for example, {‘name’ :
‘Yann Lecun’, ‘organization’ : ’New York University’, ‘Interest’ : ‘AI,
Machine Learning, Computer Vision, Robotics, Image Compression’,
‘email’ : ‘yl22@nyu.edu’, …}. Consequently, this template question
can be filled as, ”What are the research interests of Yann Lecun at New
York University?” and the answer can be found within the entity
information. Employing this method, we’ve designed an extensive
range of QA test sets for distinct task difficulty levels. The aminer
KS and aminer KA tasks shown in table 3 are generated in this way
with varying difficulty levels.

3.3 Workflow and LLM Selection
As shown in Table 2, a RALLM system usually composes of a work-
flow for retrieving domain knowledge and an LLM for reason-
ing [24]. R-Eval presents a feasible protocol that combines different
workflows and LLMs for comprehensive evaluation.

Workflow Selection. Following BOLAA [27], we select 4 typical
baseline workflows for retrieving knowledge from our environment:
(1) ReAct [53] is a prompt-based paradigm to synergize reasoning
and acting in language models for task solving, which create action
spaces for LLMs to retrieve external knowledge. (2) PAL [10] is a
program-aided workflow that allows LLMs to generating python
programs for executing API queries. (3) DFSDT [32] is a general
decision-making strategy for API using, which enhances the reason-
ing capabilities of LLMs by considering multiple reasoning traces
in the environment. (4) FC1 is short for Function Calling, which is
a close-source tool using workflow by OpenAI.

LLM Selection. The evaluated LLMs consist of two categories: (1)
Open-source Model, including Llama2-chat (7B) [40], Tulu (7B) [46],
Vicuna (13B) [56], Llama2 (13B) [40], CodeLlama-instruct (13B) [34],
ToolLlama-2 (7B) [31]. (2) Commercial Model: GPT3.5-turbo4 and

4https://platform.openai.com/overview
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Table 2: Comparison with existing works’ evaluations of RALLMs. # is the short for ‘number’. The column Levels of Tasks refers
to the task categories divided in the evaluation. Analysis Toolkit means whether this work provides an analysis toolkit.

Research for RALLM Number of
RAG workflows

Number
of LLMs

# of evaluated
feasible RALLMs

Levels
of Tasks

Number
of Tasks

Avg. test data
for each domain

Analysis
Toolkit

ToolQA [57] 2 2 3 (easy, hard) 6 255 ×
ToolBench [31] 3 5 6 (I1, I2, I3) 6 258.3 ×
API-Bank [21] 1 6 6 None 4 6.1 ×
FLARE [12] 4 1 4 None 4 432.3 ×
IRCoT [42] 3 2 6 None 4 500 ×

DECOMP [14] 3 2 6 None 4 100 ×
ReAct [53] 4 3 12 None 2 500 ×

R-Eval (ours) 4 8 21 (KS, KU, KA) 12 600 X

GPT-4 [29]. As the workflows may require LLMs having the instruc-
tion following abilities to produce specific output format like code
for PAL, not all LLMs can fit the workflows. Therefore, we tried to
combine LLMs with the workflows and keep those combination
that can achieve non-zero performance on our benchmark. Finally,
we get 21 feasible RALLM systems for evaluation, which has more
RALLMs than those implemented in previous works [31, 53].

3.4 Analysis Tools
We developed three automated analysis tools to evaluate the perfor-
mance of various RALLMs in domain-specific tasks. (1) Matching
Analysis facilitates comparison between systems on the same RAG
workflow by visualizing the evaluation results. It normalizes sys-
tems’ performance via a radar map, which can reflect the difference
directly. (2) Error Analysis provides a detailed view of each sys-
tem’s weakness across different tasks and identifies common error
types. This helps to pinpoint each system’s areas for improvement.
(3) Deployment Analysis assesses the trade-off between runtime
speed and performance for each system, aiding decision-making in
system deployment. These tools offer a comprehensive, multifac-
eted analysis of RALLM system performance, providing valuable
insights for their application in domain-specific tasks.

Error and Response Types. To provide amore comprehensive error
analysis for RALLMs, we have conducted a fine-grained taxonomy
of system response types, which include all error and correct cases.

Under the R-Eval framework, all RAG systems, besides preserv-
ing the final outcome (response), also document the information
retrieved (scratchpad), and whether the inference process was in-
terrupted due to erroneous usage or faults with the retrieval tools.
Based on these records, we categorized the system responses into six
types in a fine-grained manner. When the response aligns with the
standard answer, if the scratchpad contributes to the final response,
we define this situation as Exact Match (EM). If the information
in the scratchpad doesn’t relate to the response, i.e., the system
can answer consistently with the standard answer relying on the
knowledge stored within the model, it’s considered an Answer
Match (AM). As to the situation that the response does not match
the standard answer, if the scratchpad provides useful information,
there are no problems with the retrieval process but something is
wrong in the model’s generation process grounded on the retrieved

content, we define this as Grounded-generation Error (GE). If the
scratchpad’s information is irrelevant, the faulty retrieval process
leads to undesirable responses. We then have to ascertain whether
the retrieval process was interrupted. There is an issue with the
logic of the retrieval if the process is halted. We denote this as
a Reasoning Error (RE). If the retrieval process was interrupted,
depending on whether the interruption was due to faults in the
retrieval tool itself or improper use of the tool, it is classified as a
Model Error (ME) or Tool-using Error (TE), respectively. Specially,
R-Eval uses the F1-Score between system responses and standard
answers to determine whether the response matches the standard
answer, and the usefulness of the scratchpad is assessed by checking
if the response is contained within the scratchpad.

This kind of fine-grained classification enables us to quickly as-
sess the capabilities of an RAG system and diagnose the cause of
errors. For instance, a higher proportion of EMs signifies better RAG
capabilities. A high proportion of AMs implies the system model
has strong internal capabilities but weak retrieval capabilities. GE
is in contrast to AM: the higher the proportion of GEs, the stronger
the retrieval capabilities but the weaker the model’s capabilities. A
high proportion of REs might indicate that the current system’s rea-
soning capabilities are insufficient to support the current workflow.
The presence of MEs and TEs reveals issues with the model itself
or the retrieval tool interface, necessitating separate inspections.

4 EVALUATION EXPERIMENTS
4.1 Evaluation Settings
We evaluate all the combinations between four RAG workflows and
eight LLMs. However, as FC (Function calling) is implemented by
OpenAI, only GPT-3.5 and GPT-4 can use it. Besides, the DFSDT
also resembles the format of API calling of FC, therefore, for open-
sourcedmodels, only toolllama that trained on this format can use it.
Therefore, we get total 21 feasible RALLM systems and report their
results on aminer domain (Table 3) and wiki domain (Table 5). All
RALLMs are evaluated under the same one-shot setting, with the
same decoding hyper-parameters. More details are in Appendix B.
In the following sections, we will organize our experiment and
analysis results with six research questions (RQs).
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Table 3: Performance of different systems for each task on Aminer domain and the average performance of overall tasks.

Workflow LLM aminer KS aminer KU aminer KA Overall Average (Level 1, 2, 3)
1-3 Rank 2-4 Rank 3-5 Rank wiki Rank aminer Rank all Rank

ReAct gpt-4-1106 89.7 1st 46.7 3rd 57.7 1st 38.8 1st 64.7 1st 45.3 1st
PAL gpt-3.5-turbo 80.1 3rd 50.7 2nd 54.9 2nd 19.9 6th 61.9 2nd 30.4 2nd
PAL gpt-4-1106 59.3 4th 56.8 1st 52.7 3rd 20.3 5th 56.2 3rd 29.2 3rd
ReAct llama2-7b-chat 45.2 5th 36.5 6th 21.5 6th 23.8 3rd 34.4 5th 26.4 4th
PAL llama2-13b 25.3 6th 36.4 7th 20.3 7th 25.2 2nd 27.3 6th 25.7 5th
ReAct gpt-3.5-turbo 84.6 2nd 4.0 14th 33.0 4th 19.6 7th 40.6 4th 24.9 6th
ReAct vicuna-13b 19.9 10th 6.0 13th 7.1 16th 20.7 4th 11.0 17th 18.2 7th
PAL tulu-7b 9.1 15th 26.8 9th 11.5 12th 18.9 8th 15.8 9th 18.1 8th
PAL vicuna-13b 4.5 17th 40.9 4th 2.3 20th 16.7 9th 15.9 8th 16.5 9th
ReAct llama2-13b 16.7 13th 0.7 19th 23.2 5th 15.0 10th 13.5 12th 14.6 10th
PAL llama2-7b-chat 18.7 12th 2.8 15th 16.1 8th 12.4 11th 12.5 14th 12.4 11th
PAL codellama-13b 4.4 18th 38.3 5th 8.1 14th 10.0 14th 16.9 7th 11.7 12th
PAL toolllama2-7b 1.6 20th 24.4 10th 4.6 18th 12.2 12th 10.2 18th 11.7 13th
ReAct tulu-7b 4.0 19th 27.8 8th 7.9 15th 10.3 13th 13.2 13th 11.0 14th
DFSDT gpt-4-1106 20.6 9th 9.6 12th 11.8 11th 9.9 15th 14.0 11th 10.9 15th
FC gpt-4-1106 24.7 7th 10.9 11th 10.2 13th 8.2 18th 15.3 10th 9.9 16th
FC gpt-3.5-turbo 19.0 11th 1.0 17th 15.9 9th 8.8 16th 12.0 15th 9.6 17th
ReAct toolllama2-7b 15.0 14th 2.2 16th 5.7 17th 8.3 17th 7.6 19th 8.1 18th
DFSDT gpt-3.5-turbo 20.7 8th 0.2 20th 13.8 10th 4.8 20th 11.6 16th 6.5 19th
ReAct codellama-13b 0.2 21th 0.8 18th 0.7 21th 7.0 19th 0.6 21th 5.4 20th
DFSDT toolllama2-7b 7.1 16th 0.0 21th 2.3 19th 3.5 21th 3.1 20th 3.4 21th

wiki aminer
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Figure 3: Average performance on different levels’ tasks and
domains for GPT-4 with the PAL and DFSDT workflow.

4.2 Task Results
RQ1: How effective are RALLMs across three levels’ tasks?

The evaluation of RALLMs across three levels of tasks, namely
Knowledge Seeking (KS), Knowledge Understanding (KU), and
Knowledge Application (KA), reveals interesting patterns.

For KS and KA tasks, which assess the model’s ability to recall
facts and then utilize retrieved knowledge in performing reasoning,
the results suggest a potential correlation between a model’s rank
on KS and KA tasks. Some models, such as the ReAct with GPT-4-
1106, demonstrate superior performance on both KS and KA tasks,
securing the top rank among all RALLMs, which suggests a strong
correlation between retrieving relevant facts and applying retrieved

knowledge to new problems. On the other hand, some models
like PAL with toolllama2-7b struggle with these tasks, indicating
potential areas of improvement in retrieval and reasoning.

In the Knowledge Understanding tasks, which evaluate themodel’s
comprehension of the inherent knowledge embedded in texts, the
performance varies as well. Some models that are good at KS and
KA tasks perform not as well on KU tasks. For example, ReAct with
GPT-4 only ranks the third on aminer’s KU task, suggesting that
these models may have difficulty interpreting or understanding the
underlying knowledge in a given text. However, models with PAL
workflow show a strong understanding performance. For example,
PAL with GPT-4 performs the best on the KU task of aminer domain.
In Figure ⁇, we observe that this system can also perform well on
KU tasks of Wiki domain, proving its ability on understanding.

In summary, the effectiveness of RALLMs across the three levels
of tasks varies significantly. While some models excel in certain
tasks, they may falter in other tasks, highlighting the complexity
and challenge of developing systems that can effectively retrieve,
understand, and apply domain-specific knowledge.

.

4.3 Domain Results
RQ2: How effective are RALLMs on wiki and aminer domain?

The effectiveness of RALLMs also varies significantly across
different domains. In the Aminer domain, which has over 69 mil-
lion scholar profiles and 290 million publications, the performance
of RALLMs is varied. Some models, like ReAct with GPT-4-1106,
perform well, indicating a strong ability to handle domain-specific
knowledge. However, othermodelsmay encounter challengeswithin
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Figure 4: Radar map of single system’s performance on all tasks for different 4 workflows.

this domain. As illustrated in Table 3, models using the ReAct work-
flow generally secure higher performance ranks for the Wikipedia
domain than for the Aminer domain. This implies that while these
models are adept at handling knowledge from a broader domain,
they might struggle with the specific types of knowledge and data
present within the Aminer domain.

Overall, while some RALLMs demonstrate strong performance
across both the Wikipedia and Aminer domains, others struggle
in one or both domains. This highlights the importance of devel-
oping models that can effectively handle both broad, open-domain
knowledge and domain-specific knowledge.

4.4 System Comparison
RQ3: Which RAG workflow and LLM combination is the best?

From the results, it appears that the combination of the ReAct
workflow with the GPT-4-1106 LLM performs exceptionally well
across both the Wikipedia and Aminer domains, as well as across
all three levels of tasks. This combination seems to provide a strong
balance of fact retrieval, knowledge understanding and application,
making it a robust choice for a variety of tasks and domains.

However, it’s important to note that while this combination
outperforms others in this evaluation, the ”best” combination may
vary depending on the specific task or domain at hand. For example,
other combinations, such as PAL with GPT-4-1106 or ReAct with
Llama2-7B-chat, also show strong performance in certain tasks or
domains, where PAL with GPT-4-1106 even surpasses ReAct with
GPT-4-1106 on the understanding task of aminer domain.

Therefore, while the ReAct and GPT-4-1106 combination appears
to be the best overall, other combinations may be more suitable
for specific tasks or domains. This underscores the importance of
considering both the task and the domain when choosing a RAG
workflow and LLM combination.

5 ANALYSIS
To discover the underlying characteristics of RALLMs beyond eval-
uation performance, we delve into a multifaceted analysis on the
compatibility between RAG workflows and LLMs, the error types,
and the trade-off between effectiveness and efficiency.

5.1 Matching Analysis
RQ4: Which LLM best matches each RAG workflow?

To understand the synergies between LLMs and RAG work-
flows, we compare the performances of all LLMs within each RAG
workflow. The results, visualized in Figure 4, display the average
performance of all RALLMs on different tasks, with each sub-figure
representing a different workflow. Our findings are as follows:

(1) Within the ReAct workflow [53], GPT-4-1106 emerges as the
best matching LLM across all six task types and domains, leading
with a significant margin over other LLMs.

(2) However, within the PAL workflow [10], GPT-3.5-Turbo-
1106 achieves results comparable to GPT-4-1106 across all levels.
While the GPT series models generally outperform other LLMs,
they do not surpass Llama2-13b on the three task levels within the
Wikipedia domain. This observation suggests that the PAL work-
flow may enhance the performance of smaller 13b-size LLMs, such
as Llama2-13b, more than larger LLMs like the GPT series.

(3) Regarding the DFSDT workflow [32], which requires a spe-
cific tool-using format akin to FC, only GPT-3.5-Turbo, GPT-4 and
ToolLLaMA2-7B [32] can generate valid results. Among these, GPT-
4-1106 outperforms the other two LLMs by a large margin.

(4) Surprisingly, within the FC workflow, GPT-4 only surpasses
GPT-3.5-Turbo on KU and KS tasks within the Aminer domain,
while achieving similar or worse results on other tasks. This anom-
aly prompted us to analyse the error types associated with GPT-4.

5.2 Error Analysis
RQ5: What types of errors does GPT-4 make across different work-
flows?

In Section 3.4, we defined various error types that RALLM sys-
tems might encounter. Here, we aim to identify the distribution of
these error types in GPT-4 across different RAG workflows.

Figure 5 visualizes the distribution of GPT-4’s error types across
the four RAG workflows. Notably, the PAL workflow exhibits the
highest proportion of Answer Match errors among all workflows at
27.1%, while its Exact Match answers only account for 16.5%. This
suggests that the knowledge retrieved by PAL does not contribute
significantly to reasoning, and most correct answers originate from
the inherent knowledge of the LLMs. Additionally, the tool-using
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Figure 5: Error distribution of GPT-4-preview-1104 with different 4 workflows on all tasks.
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Figure 6: Average time cost and task performance of different
LLMswith PALworkflow on aminer domain for deployment.

error rate for PAL is also the highest, reaching 49.4%, indicating that
the API calling process is often interrupted, preventing successful
retrieval of domain knowledge. As PAL workflow executes the API
calling code only once, it cannot revise the code when encountering
a tool execution error, which is critical in other workflows [31, 53]
and explains why GPT-4 performs poorly with PAL.

Other RAG workflows, while more robust in their tool-using
manners, require more inference time as they can interact with
our query APIs for feedback and can execute multiple rounds of
queries. Consequently, the ReAct, DFSDT, and FC workflows yield
fewer tool-using errors than PAL, enabling them to retrieve domain
knowledge more successfully. This results in fewer Answer Match
errors and a greater number of Exact Match answers.

5.3 Deployment Analysis
RQ6: Which system offers the best practical performance (both in
terms of efficiency and effectiveness) within the specific domain?

We are interested in assessing the practical performance of these
RALLM systems, specifically in terms of execution time and the F1

score of the answers. For this study, we report the results of eight
LLMs using the PAL workflow, as PAL’s simple-turn interaction
with the environment allows for faster execution compared to other
workflows. Following the evaluation process of ToolBench [31], we
evaluate efficiency using a single thread on a GPU (Nvidia A100)
for each open-source LLM, and one single thread for each LLM
called via the OpenAI API. The analysis results for the Aminer
domain are illustrated in Figure 6, with additional results provided
in Appendix C. Our findings are as follows:

GPT-4 and GPT-3.5 achieve superior F1 scores on Aminer and
require less execution time than other open-source LLMs. This
efficiency is likely due to the fact that while each open-source LLM
is run on a single GPU, the GPT models are invoked through an
API, which may leverage a cloud server with multiple GPUs.

When comparing only open-source LLMs, we observe that al-
though Llama-13b ranks among the best in terms of F1 score, it
is significantly slower than other LLMs, taking approximately 105
seconds per query in the Aminer domain. Among all the models,
Tulu-7b strikes a commendable balance between efficiency (40-
50 seconds per query) and effectiveness (F1 0.18). Intriguingly, as
depicted in Figure 6, we find that open-source LLMs with larger
parameters can markedly improve the F1 score while compromising
on efficiency. This trade-off can guide developers in selecting the
most suitable RALLM for their specific domain applications.

6 CONCLUSION
In this work, we presented the R-Eval toolkit, a comprehensive
evaluation platform designed to address the existing gap in the sys-
tematic evaluation of Retrieval-Augmented Large Language Models
(RALLMs). By offering a user-friendly, modular, and extensible in-
terface, R-Eval facilitates the comparison and analysis of various
RAG workflows and LLMs. Our study using this toolkit revealed
significant variations in the performance of RALLMs across differ-
ent tasks and domains, underscoring the importance of task- and
domain-specific selection of RAG workflows and LLMs. As the field
continues to evolve, we believe that R-Eval will benefit both re-
searchers and industry professionals with a pivotal role in shaping
the future of RALLMs and their domain-specific applications.
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A IMPLEMENTATION DETAILS
We have implemented an environment for each domain with several
query APIs to retrieve the domain knowledge.

On Aminer domain, we have these APIs:
• searchPerson. The searchPerson function, which is based

on the scholar entities’ information in Aminer, receives the name,
organization and interest of this intended scholar and returns the
detailed information including person’s id, citation number and
publication number via fuzzy match.

• searchPublication. The searchPublication function, which is
based on the publication entities’ information in Aminer, receives
the publication information and returns the related information
including publication’s id, title and publication year via fuzzy match.

• getCoauthors. The getCoauthors function, which is based on
the relation information between scholar entities, receives the per-
son id then returns the input scholar’s coauthors and their detailed
information including id, name and relation via exact match.

• getPersonInterest. The getPersonInterest function, which is
based on the property information of scholar entities in Aminer,
receives the scholar’s id and returns a list of the person’s interested
research topics via exact match.

• getPublication. The getPublication function, which is based
on the property information of publication entities in Aminer, re-
ceives the publication’s id and returns its detailed information
including the publication’s abstract, author list and the number of
citation via exact match.

• getPersonBasicInfo. The getPersonBasicInfo function, which
is based on the scholar entities’ property information in Aminer,
receives the person’s id of this intended scholar and returns the
detailed information including person’s name, gender, organization,
position, short bio, education experience and email address via exact
match. In fact, these information consists of the person’s profile.

• getPersonPubs. The getPersonPubs function, which is based
on the relation information between publication entities and scholar
entities in Aminer, receives the person’s id, and returns the detailed
information including the publication’s id, title, citation number
and the authors’ name list via exact match.

On Wikipedia domain, we have these APIs:
• Search. The Search function, which is based on the entities’

page information in Wikipedia, receives the entity’s name, and
returns the page’s abstract via fuzzy match while storing the other
sections’ information in the document store for the further usage.
If there is no matching Wikipedia entity, the API will provide a list
of possibly related entities for continuous searching.

• Lookup. The Lookup function, which is based on the previous
stored entity information via search API on Wikipedia, receives
the keyword and returns a list of relevant text segments from the
document store via fuzzy match.

• Finish. This is a special function for stopping the searching
process on Wikipedia.

Table 4: Hyper-parameters for open-source LLMs’ inference
in our evaluation.

Process Parameter Value

Tokenization
max_length 2048
truncation True

skip_special_tokens True

Decoding

num_beams 1
do_sample False
temperature 0
stop sequence </s>

max_new_tokens 128

B EVALUATION DETAILS
In our study, we evaluate different RALLMs on various datasets
and domains under a one-shot setting. On each task, we will give
RALLMs an example of how to interact with the domain API to
retrieve the knowledge and reasoning on it. For the fairness of
comparison, different RALLMs share the same example (query and
answer) while the retrieval and reasoning processes are customized
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Table 5: Performance of different systems for each task on Wikipedia domain.

Workflow LLM wiki KS wiki KU wiki KA
1-1 1-2 Rank 2-1 2-2 2-3 Rank 3-1 3-2 3-3 3-4 Rank

ReAct gpt-4-1106 23.1 25.8 1st 33.7 51.3 40.0 1st 59.7 64.6 27.3 23.8 1st
PAL gpt-3.5-turbo 10.4 9.1 10th 12.7 65.0 43.0 2nd 12.1 9.4 5.1 12.0 13th
PAL gpt-4-1106 7.9 4.6 17th 18.6 30.0 47.0 5th 30.3 12.1 14.2 17.5 5th
ReAct llama2-7b-chat 21.2 20.9 2nd 2.0 55.0 26.9 9th 31.5 26.8 11.5 18.3 2nd
PAL llama2-13b 19.1 13.5 3rd 1.3 67.0 45.4 3rd 25.0 18.5 8.0 29.0 4th
ReAct gpt-3.5-turbo 11.2 12.5 7th 9.3 27.0 32.0 10th 43.1 30.1 7.6 3.8 3rd
ReAct vicuna-13b 14.9 12.3 5th 4.3 57.1 26.0 8th 25.2 28.0 4.3 14.0 6th
PAL tulu-7b 10.4 8.1 11th 2.7 34.8 54.2 7th 15.1 22.7 7.5 14.8 7th
PAL vicuna-13b 8.4 5.4 15th 1.0 49.9 46.4 4th 11.9 11.2 2.9 13.3 12th
ReAct llama2-13b 16.2 11.5 4th 0.2 30.0 22.0 11th 20.1 24.6 4.0 6.5 8th
PAL llama2-7b-chat 4.0 3.2 21th 1.3 60.3 33.4 6th 2.9 2.4 0.9 3.3 21th
PAL codellama-13b 6.0 6.0 18th 0.4 11.7 32.0 14th 6.6 12.9 4.5 9.5 16th
PAL toolllama2-7b 9.9 10.6 8th 2.2 40.5 6.1 12th 8.5 19.5 3.5 8.9 10th
ReAct tulu-7b 14.7 11.8 6th 2.0 5.0 6.0 19th 18.0 23.3 1.4 10.5 9th
DFSDT gpt-4-1106 10.8 9.0 9th 9.0 8.2 12.2 15th 10.7 18.4 7.9 3.1 11th
FC gpt-4-1106 8.2 8.0 13th 9.9 3.3 6.8 18th 10.9 15.0 8.1 3.3 14th
FC gpt-3.5-turbo 8.0 7.2 14th 2.1 4.0 21.0 16th 12.4 15.1 5.7 3.4 15th
ReAct toolllama2-7b 5.8 1.5 20th 0.0 44.0 1.0 13th 4.4 12.1 0.0 6.0 18th
DFSDT gpt-3.5-turbo 6.8 6.2 16th 0.9 4.0 3.7 20th 7.6 10.1 2.9 1.3 19th
ReAct codellama-13b 7.7 9.5 12th 0.0 13.0 9.0 17th 5.7 9.0 0.0 8.7 17th
DFSDT toolllama2-7b 4.5 4.0 19th 0.9 4.1 0.3 21th 1.8 8.7 2.1 4.8 20th
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Figure 7: Average performance of GPT-4 with different 3 workflows on all tasks.

for each RAG workflow. Note that we also provide an example pool
with at least 1.8k cases for each task, as shown in Table 1, where
the user of our toolkit can adjust the number of used examples to
fit their own few-shot settings.

The models participating in the evaluation fall into two cate-
gories: closed-source models that generate responses via API calls,
and open-source models that are directly deployed for inference,
with a temperature parameter set to 0. The other hyper-parameters
of open-source models are summarized in Table 4. To load open-
source models, we employ the widely adopted PyTorch and trans-
formers libraries. The evaluation experiments are executed on an
Ubuntu 20.04.4 server, furnished with 112 Intel Xeon(R) Platinum
8336C CPU cores, and complemented by graphic cards incorporat-
ing 8 NVIDIA A100 SXM 80GB GPUs. Furthermore, the software

environment includes CUDA version 11.4, Python version 3.9.17,
PyTorch version 2.1.2, and the transformers library version 4.28.1.

Given that all tasks are arranged in open-ended generative question-
answering formats, we choose F1 score as evaluation metrics to
reflect the model’s genuine performance. The metric is specifically
tailored to the characteristics of different task levels and is used for
post-processing the answers. For tasks that primarily use F1 as the
evaluation metric, we employ a relaxed version of F1 (token match
rate). Specifically, after tokenizing the model’s predicted results and
the reference answers using the GPT2Tokenizer [33], we calculate
whether each token in the prediction appears in the corresponding
position of the gold standard.
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Figure 8: Error distribution of GPT-3.5-turbo-1104 with different 4 workflows on all tasks.

C EXTRA EXPERIMENT RESULTS
C.1 Wiki Domain Results
RQ7: How effective are RALLMs on wiki domain?

The performance of different RALLMs on Wikipedia domain is
demonstrated in Table 5. In the Wikipedia domain, which contains
over 6.6 million English articles, some models with ReAct workflow,
such as ReAct with GPT-4-1106, demonstrate strong performance
across all three levels of tasks and win the first place on all these
tasks. To illustrate the performance difference among RAG work-
flows, we display the average performance of GPT-4-1106 model
with ReAct, DFSDT and FC workflow in Figure 7. The DFSDT and
FC perform badly on the three levels’ tasks of Wikipedia domain,
where their F1 scores are all below 0.1, which is much lower than
the ReAct workflow’s scores even though they are all based on
GPT-4-1106. This suggests that the ReAct workflow is effective
at retrieving, understanding, and applying knowledge in a broad
open-domain context.

C.2 Error Analysis for GPT-3.5-turbo
RQ8: What kinds of errors does gpt-3.5 make on different workflows?

As shown in Figure 8, the error distribution of gpt-3.5-turbo is
different from gpt-4 in Figure 5. We find that the PAL workflow
with gpt-3.5-turbo has a larger Answer Match and EM portion
than the PAL workflow with gpt-4. While their AM portion are
similar (29.9% vs. 27.1%), gpt-3.5-turbo has a significantly larger EM
portion (22.0%) than gpt-4 (16.5%). However, for other workflows
(ReAct, DFSDT, FC), gpt-3.5-turbo perfoms much worse than gpt-4.
The main error gpt-3.5-turbo encountered is RE (reasoning error),
especially on DFSDT and FC.These results reflect that gpt-3.5-turbo
may be more dependant on the retrieved knowledge for reasoning
while gpt-4 are better at inner knowledge. This provides a crucial
insight about the difference between gpt-3.5-turbo and gpt-4 on
their response and error types with different workflows.

C.3 Deployment Analysis for Wiki Domain
RQ9:Which system provides the best practical performance (efficiency
and effectiveness) on wiki domain?

We are also interested in evaluating the practical performance of
these RALLM systems on Wikipedia domain in terms of execution
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Figure 9: Average time cost and task performance of different
LLMs with PAL workflow on wiki domain for deployment.

time and answer F1 score. We report the results of 8 LLMs with PAL
workflow in Figure 9, since PAL has the simple-turn interaction
with the environment, making it much faster than other workflow.
Surprisingly, we find that although GPT-4 and GPT-3.5 get better
F1 scores than other models on Aminer, they are not the best model
in the Wikipedia domain.

If we only compare open-source LLMs, we find that although
llama-13b is the best on F1 score, which is even higher than GPT-4,
it is much slower other LLMs (250s per query on the Wikipedia
domain). Among all the models, tulu-7b still achieves a good trade-
off between efficiency (50s per query) and effectiveness (0.19 F1
score) on the Wikipedia domain. Interestingly from Figure 9, we
find the open-source LLMs that based on Llama2 are generally
worse on the efficiency than those Llama-based LLMs. For example,
vicuna-13b is fine-tuned on Llama while Llama2-7b is in the Llama2
family and has less parameters than vicuna-13b. But, llama2-7b is
slower than vicuna-13b. This finding can help developers choosing
the suitable LLM for their domain applications.
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